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LOBE AREA IN ADIABATIC HAMILTONIAN SYSTEMS

by Tasso J. Kaper and Stephen \Viggins
104-44 California Institute of Technology
Pasadena, CA 91125
(818)-356-4127
and
Center for Nonlinear Studies, LANL

Abstract We estatlish an analytically computable formula, based on the adiabatic Melnikov function,
for lobe area in one-degree-of-freedom Hamiltonian systems depending on a parameter which varies slowly
in time. We illustrate this lobe area result on a slowly parametrically forced pendulum, a paradigm
problem for adiabatiz chaos. Our analysis unites the theory of action from classical mechanics with the
theory of the adiabatic Melnikov function from the field of global bifurcatioa theory.

Keywords: action, lobe area, adiabatic chaos, adiabatic Melnikov function, parametri-
cally forced pendulum.

1 Introduction.

Planar Hamiltonian systerns which depend on a parameter which varies slowly in time

atise in the context of many physical problems. The equations of motion are:

R PR
q - (')p p’qﬂ'
oH
) = = —— A 1
T = €

where 2 i3 the parameter waich varies slowly in time and # is the Hamiltonian. \Vhen
¢ =10, (!)is a one-parameter family of planar oscillaters, and we shall refer to (1) as the
frozen in time system.

When 0 < ¢ « 1, there are two qualitatively different regions on any instantancous

planar p = ¢ shee of the extended p — ¢ — t phase space of (1) a regular region and a



separat ...-swept region. The regular region is defined as that area in which the adiabatic
invariant (which is given to leading order by tl?; action of an orbit, see [1]) is conserved.
In this region the frequency of the unperturbed orbits is bounded away from zero for all
values of the parameter. Furthermore, in the special case that the Hamiltonian depends
periodically on z, the extension of KAM theory given in [2] guarantees that most periodic
orbits of the planar systems which are sufficiently far away from any frozen separatrices
survive as invariant tori on which the the flow is quasiperiodic when the parameter is
allowed to vary slowly in time.

The complement of the regular region is the so-called separatrix-swept region. This
region is defined as that area in which the unperturbed motion has a zero frequency for
some value of the parameter. The separatrix-swept region has recently received a lot of
attention. See for example (3], [4], (5], [6], (7], and [8]. The phenomenon of separatrix-
crossing occurs in this O(1)-sized region (4], orbits may evolve chaotically in the sense
of the Smale-Birkhoff Homoclinic Theorem if H depends periodically on z [6], and the
structure of the O(1) “chaotic sea” in periodic problems is very rich [7].

The organizing structures in the separatrix-swept region are the stable and unstable
manifolds of hyperbolic orbits. The case which is of interest is when these manifolds
intersect each other. For example, if the hyperbol:- orbit is periodic or quasiperiodic in
time, then its stable and unstable manifolds intersect infinitely ma..y times and form
homoclinic (or heterocliric) tangle. Problems in which there are ouly a finite number of
intersections, t.e. in which the hyperbolic orbit has more general time-dependence, also
arise, see for example [4], [5]. and [10].

When there are wwo intersections of these stable and unstable maniiolds in the p - ¢
plane at any instant of time, then they define a lobe in that plane. Knowing the rrea of

a lobe analytically is important for our understanding of the separatrix swept region apnd



also for many applications. In this paper, we establish a general exact lobe area formula
as well as a closed form approximation, which is derived for arbitrary lobe shape, for (1)
and discuss some of its physical consequences.

We first discuss the special case in which the Hamiltonian depends periodically on
the slowly-varying parameter in Section 2. We relate our results to those obtained in
(7). Then in Section 3 we discuss the general case, in which H can have quite general
dependence on 2. We conclude this paper with some observations about which homoclinic

orbits correspond to minima of the action and which correspond to minimaxs.

2 z-Periodic Hamiltonians.

In this section we establish analytically the observation that, when H deperds periodi-
cally on z, the area of a lobe in (1) is asymptotic (as ¢ — 0) to A,, which is the area in
the p — q plane between the two separatrices of the frozen in time system which enclose

the maximum and minimum areas.

2.1 Asymptotic Lobe Area. -

We assume that the frozen in time system has a curve of hyperbolic fixed points, which
may be writteu as a graph over z, 9(z), cach of which has an orbit homoclinic to it. We
denote the homoclinic orbit on the instantaneous p — q plane of the extended p — ¢ — =
phase space of the frozen in time system by ', This assumption is made with out loss
of generality, for if (1) has more than one homoclinie orbit for a given z than our results

apply to each one individually, and if (1) has a heterocelinic orbit then the results apply to



it as well. From the persistence theory of hyperbolic invariant manifolds, we know that
this curve of fixed points ( an invariant manifold) becomes a hyperbolic periodic orbit,
Ye, when ¢ # 0. We also know that ~, has two-dimensional stable and unstable manifolds
(see [11]), denoted by W*(q,) and WY(4,.) and on which orbits approach and leave
7., respectively, exponertially. Furthermore, from the theory of the adiabatic Melnikov
function [9], we know that if the adiabatic Melnikov function is periodic in = and has an
infirite set of simple zeroes, then one branch of each of W¥(v,) and WY (+,) interse.t each
other along infinitely many curves in which the orbits homoclinic to 4, lie (see Figure 1).
The points at which these homoclinic orbits intersect the Poincaré surface of section are
called primary intersection points [12].

Let P and Q be the orbits of the two adjacent primary intersection points P and Q
which define the lobe LF? on the instantaneous p — q plane at time time t;, denoted by

M;,. The area of LP9 is given exactly by the difference in the actions of P and Q [13]:
= — Hdt. 2
A 1r,_deq H (2)

Since there does not appear to be a way to compute A in closed form from (2), we give
an approximate expression which may be eveluated analytically in two ways and then
show that the error n:ade in this approximation vanishes asymptotically at least as fast
as ¢ when ¢ — 0.

Let 1'% be the separatrix of the frozen in time system which encloses the maximum
arca and "% be the separatrix which encloses the minimum area. The approximate lobe
area is given by the flux of the perturbed vector field through the picce of the unperturbed

homoclinic manifold with z restricted to lie in the interval [Zy, Z;]. see Figure 2:

Ap = / /L dp A dy - dH A dt. (1)

This integral can be evaluated in closed form because the integrand is evalnated on the



known solutions lying on £. The surface integral in (3) may be written as a line integral

around the boundary of £ by Stokes’ Theorem:

{
A = /rzo(pdq - Hdt) - /M (pdq — Hadt). (4)
Then, observing that dt = 0 on the instantaneous p — q plane II,,, and hence dt = 0 also

along ['% and '?!, we arrive at

Ao= [, pdq- ./rzn pdq = A,. (5)

A second way in which (4) may be evaluated analytically is in terms of the adiabatic

Melnikov function M 4(z), which is defined as

Ma) = [ (%—f(pa(s),q;(s).z) - %—’z’(v(z).z)) ds. (6)

where s is the time variable of the frozen system, and (pg(s), qg(s), z) is the solution of
the frozen in time system on %, see [14] and [6]. A computationally more convenient
form of M4(z) can be derived from the definition using integration by parts on s and

rcalizing that the boundary terms vanish:

d OH % OH . . . .,
U O RO NG

Mae) = = [~ sZm=(pila).gslah ) = [

where {ll.%L'L} denotes the Poisson Bracket of H and —f,L"- with respect to (p,q). We
ﬂl}_

Yo

remark that the integrand maybe written as { H
In (8], we perform this second evaluation of Ay, by clianging coordinates from the
pair (p.q) and from the pair (I, t) to the pair (9, z), which are good coordinates for the

homoclinic manifold. We obtain:

2 o than . . :
Ag = -/lo /r‘ (—((T + 7}':—) (Pl 9)vaty(8). = )dsdz. (8)

i |



Now, we add %(7(:), z) and subtract %g(-y(:),:), which are equal since the other
partial derivatives at the hyperbolic fixed point vanish, from the integrand and use the

fact that %’;’(pc',(s).qg(s),:) = %(7(2), z) for all s to arrive at:

Z,
Ao = /z., Ma(:)dz. (9)

Finally, we show that the error made in the approximation vanishes at least as fast
as e. We do this by evaluating the difference between the exact and the approximate
lobe areas.

Geometrically, this difference is given by the flux of (1) through any two surfaces
which connect £ and WY (v,) when z < z; = et3 and W5(q.) when z > z;. This can be
seen from the following picture: Together with £ and pieces of the stable and unstable
manifolds of the hyperbolic periodic orbit (W*(,) when z < z; and WY(v,) when z > z,
where z; = ef; and we are looking at the instantaneous plane II,;), the two connecting
surfaces form an infinitely long tube whose cross-section in the p — g plane is four-sided
when z € {Z,, Z,] and three-sided for z outside this interval with a hole in its side on the
reference plane II,, which is exactly the lobe LF9. We label the connecting surfaces by
0% and Q9 in Figure 3. In [8] we show that, as z —+ +o00, the cross-sectionul area of the
tube vanishes exponentially. Therefore, the net flux through all of the sides of the tube
is equal to the area of the “hole”, i.e. the area of the lobe LP9. Now, since there is no
flux through eithe. W5(v,) or WY(4,), the area of the “hole” is equal to flux through
¥, which is given by our approximation Ag, plus the flux through the two connecting
surfaces. Thus, it remains only to determine the flux through the connecting surfaces
017 and Q9. In [8], we prove that this flux, i.e., the error in our approximation, it O(¢).

Thus the numerical observation about the asymptotic behavior of the lobe area in

(1) when I depends periodically in 2 is established analytically.  As the area enclosed
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by the frozen separatrices I'* increases, the region inside the bomoclinic tangle ingests
phase space area, and vice versa, as the area enclosed decreases, the inner region ejects
phase space area. Hence, during the z-interval in which the area enclosed by the frozen
separatrices increases from its minimum value to its maximum value, an area approxi-
matcly equal to A, enters the region inside the homoclinic tangle. Similarly, during the
z-interval in which the area enclosed by the frozen separatrices decreases from its max-
imum value to its minimum value, an area approximately equal to A, leaves the region
inside the homoclinic tangle. Thus, we expect the lobe area to be given by A, to leading
order since phase space area enters and exits the region inside the homoclinic tangle only

through the turnstile lobes.

2.2 The Adiabatic Pendulum.

The results of the above theorem is nicely illustrated on the pendulum with slowly varying

base support, which is governed by the Hamiltonian

p?
H == —(1—-+9cosz)cosg, (10)

where z = ¢ and v € (0,1). For every value of z € [0,27), the autonomous frozen in time
system system has hyperbolic fixed points at (k=x,0), for all k € Z. We look at (—=,0)
and (7,0). These two points are connected to each other by upper and lower separatrices

parametrized by

(p5(3),q5(8)) = (£24/1 — 7 cos zsech(y/1 — v cos 2s), +2arcsin(tanh /1 — v cos 23)),

where s is the time variable for (1) when € = 0. For convenience we consider only the

upper half plane p > 0. The picture for the lower half plane is obtained by a 180°



rotation. From the definition, we ccmpute

My(2)

+co .
7/ spg(s) sin(gi(s))sin zds
-o0
4~sinz

= V1 —7cosz’ (1)

Thus we see that M4 has an infinite number of simple zeroes, and we know that
the stable and unstable manifolds of 4. intersect tiansversely in an infinite sequence of
curves for € sufficiently small. The Poincaré maps for zg = 0,y = 0.75, and various
values of ¢ are shown in Figure 5. We remark that the fact that the zeroes of M, are
an O(1) time-of-flight apart implies that all, except for possibly one, of the pip’s arz
exponentially close to .. We also remark that the three regular regions sufficiently far
inside and outside the homoclinic tangle are filled with KAM tori.

From (11) we compute

" sin 2
to = 1| T
= 8(y1+y—1-7)

= As (12)

where Ag is precisely the difference in the areas enclosed by the separatrices of the un-
perturbed system in the upper half plane corresponding to z = = and z = 0, respectively.
See Figure 4. Finally, the general result demonstrated atove that A = Ag+ O(e) is what

we observe numerically (see Table 1).



3 Hamiltonians with General 2-Dependence.

The three results for z-periodic Hamiltonians also hold when H has quite general depen-
dence on z. We assume that H is at least C® with respect to z. First, we know that a
curve of uniformly hyperbolic fixed points which can be written as a graph over the z
variable persists as a hyperbolic orbit with scable and unstable manifolds when € # 0.
The second result which carries over to the general case is the exact lobe area formula.
In [8], we give an alternative derivation of (2) which does not depend on the vector field
having a recurrent section, as (1) has when H depends periodically on 2. Finally, the
main result about the asymptotic lobe area, established in the previous section, holds in
the general case as well, and hence Ao as given by either (3) or (4) is the lobe area to
within an asymptotic error of O(e). In fact, the derivation of the result given in [8] does
not depend on H being periodic in z, only that H is at least C? in z.

The main result represents a generalization of the existing techniques to measure the
areas of lobes. The two main techniques to measure the lobe area developed to date apply
only to two-dimensional maps or to vector fields which have a recurrent planar section.
The first technique involves computing the action of the two adjacent intersection orbits
which define the lobe [13]. However, this technique does not appear to lead to a closed
form expression for the area. As stated above (2) can be derived for the general case and
a closed-form approximation can be made. The second technique is a direct geometric
measurement involving the regular Melnikov function [12]. This technique can only be
used if the shape of the lobe is such that the pieces of the stable ard unstable manifolds
which define it can be written as graphs over the unperturbed separatrix. Ience, this
direct technique cannot be used in adiabatic systems where the lobe shape does not

satisfy this property, see Figure 5. As mentioned before, our results are independent of



the shape of the lobe, and thus overcome the limitation inherent in the second technique.
3.1 A Maximal Property for Lobe Area.

The only observation which does not carry over directly from the special periodic case
to the general case is that 4y = A,, because A, is only defined for z-periodic H. Never
the less, this observation does have a counterpart in the general case. We now establish
a maximal property for the lobe area which applies to the general case and reduces to
Ag = A, in the special case.

In particular, we show that the zeroes of the adiabatic Melnikov function occur in
such a way that the area 4, (determined by the frozen separatrices ' and I'?) is locally
the largest possible. We take £(z;,z) to be the piece of I' with the variable z restricted

to the interval {z;, z], where z; is a constant. Second, we define the function:

A(z;,z)://z('m)dp/\dq, (13)

which is the area of the projection of ¥(z;,2) on a slice II,. By a calculation similar to

that done in the previous section, the function A can also be written as:
X =) dH
A(:.-,:):/h [[_ws{H,—a?}ds]dz, (11)
which is the integral of M4(z) over £(z2;,z). Now,
dA _ 00 oH _ .
(a9 = /_wa{H, S uds = Ma(2). (15)

Hence we know that Z, and Z, are simple zeroes of 44(z,, z), because Zy ard Z,; are
dz
simple zeroes of M4(z). Next we remark that because £‘-‘;—i‘-(z) has different signs at Z,

and Z,,

d’A d*A
F(Z.‘.Zu) and F(Z.‘,Zﬂ (lﬁ)
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are of opposite signs, as well. Thus the adiavatic Melnikov function picks out in a natural
fashion a pair of adjacent local extremas, one minimum and one maximum, of A z;, z) and
the local extremal frozen separatrices T2 (maximal) and T2' (minimal), respectively.
We remark that in the special case discussed in Section 2, we get A(Z;,Z,) = A,, as

stated there.

3.2 Action Minimizing and Minimax Homoclinic Orbits.

We conclude this section with the following remark. The orbits of (1) homoclinic to
~. are of two types. One corresponds to a minimum of the action, and the other type
corresponds to a minimax (i.e., local maximum) of the action, see [15]. The observation
made above about M, determines this correspondence.

As € — 0, the homoclinic orbit Q limits on the separatrix ['?!. Therefore, because
['%' is a local minimum of A(z;,2), Q is a local minimum of the action. Similarly, as
¢ — 0, the homoclinic orbit P limits on the separatrix [%. Therefore, because I'%
is a local maximum of A(z,z), P is a local maximum of the action. In other words,
the homoclinic orbit corresponding to z such that ;‘L‘%(ﬂ > 0 and M4(3) = 0is a
local minimum, and the homoclinic orbit corresponding to z such that %ﬂl < 0 and
M4(2) = 0 is a local maximum. We remark that a similar correspondence, betweer the
well-known Melnikov function for small-amplitude perturbations (see [16]) and the type
(either action-minimizing or minimax) of the homoclinic orbit, must also apply in the
case of small amplitude perturbations where the geometric identification of the minimum

and the minimax homoclinic orbits is not as clear as it is for adiabatic problemns.
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Figure Captions
1. Geometry of (1) in the extended p — q — z phase space with 0 < ¢ < 1.
2. The section, L. of the homoclinic manifold I' used to get the approximation, Aq.

3. The error made in the approximation is given by the flux of the perturbed vector field

through the connecting surfaces % and Q°.
4. Unperturbed pendulum phase portrait, with 4 = 0.7.

5. Sequence of Poincaré maps which show that lobes become larger as ¢ gets smaller.

'I'iie example is the adiabatic pendulum of Section 6 with vy = 0.75. a: ¢ = & b: « = &
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epsilon lobe area
¥=05 2x/15 3.74
v =0.5 2x/18 3.84
v=0.5 2x/20 3.88
7=0.5 27 /25 3.94
¥y=0.5 2x/30 3.97
7=0.5 0 Ay = A, =4.14

Table 1: Lobe area vs. ¢ based on a mumetical trapesoidal rule sum integration.
The lobe area increases as ¢ decreases.
Numerical solution of (5.1), done using a fourth order symplectic integrator.



